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Initial-value problems for Rossby waves in a shear 
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The time-dependent evolution of sheared Rossby waves starting from an initial 
disturbance is studied for the simple case in which the shear is uniform. The 
uniform-shear assumption allows explicit solutions to  be obtained which are useful 
in addressing the issue of the long-time asymptotic approach to normal modes and 
in assessing the relative importance of viscosity, nonlinearity and time-dependence 
in the evolution of Rossby waves in the presence of critical layers. 

1. Introduction 
I n  a shear flow U(y), a wave with a well-defined phase speed c will encounter a 

critical level where U( y) - c vanishes. What happens to a wave as i t  propagates to 
such a location is of both theoretical and practical importance (see Tung 1979). It 
would seem that the most natural way to  answer the question concerning the fate 
of the wave is to release in the shear flow an initial wave disturbance with the required 
characteristics and study the evolution of the wave in time. However, this is not the 
procedure adopted in most past studies, presumably because of the difficulties, both 
analytic and numerical, involved in treating the long-time evolution of free oscillations 
under shear, as mentioned by Stewartson (1978). Our present intuitions on such 
problems as ‘absorption’ or ‘reflection’ of waves approaching a critical level have 
mostly been gained instead either from normal-modelsteady-state theory or from 
asymptoticlnumerical solutions of co~&nuousZy forced problems. These intuitions, as 
we shall see, are not always applicable to the free-wave problem at hand. 

I n  normal-mode theory, the solution, say the stream function @, is assumed to be 
of the following separable form :t 

@(x, y, t )  = eik(x-ct) $(Y), (1.1) 

where E is the wavenumber and c is the phase speed, both in the x-direction, along 
which U ( y )  flows. Substituting (1.1) into the (linear inviscid) vorticity equation, one 
then obtains the usual Rayleigh-Kuo equation for the modal structure $(y) : 

A local Frobenius expansion near y = yc = clU, reveals that $(y) has a logarithmic 
singularity a t  ye, though it  is often not possible to  determine if yc is real based simply 
on such a local expansion. A misconception is often attached to  this normal-mode 
solution: It is sometimes assumed, albeit implicitly, that any disturbance in a shear 
flow will eventually develop a critical-level singularity if a t  least part of the spectrum 

7 The phrase ‘normal mode’ is used in this paper loosely to denote ‘solution in the modal form’ 
(1.1). 
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of phase speeds lies within the range of U(y). And, with the balance of terms implied 
by the presence of this singularity, various continuation conditions are obtained 
across the critical layer which supposedly determine the fate of the ‘incident wave’. 

It was pointed out by Lin (1945), based on an asymptotic solution of the 
Orr-Sommerfeld equation in the limit of large Reynolds numbers (i.e. small viscosity), 
that the solution to (1.2) with c, > 0, the so-called self-excited disturbance, does not 
need an ‘inner friction layer ’ ; the solution on one side of U -  c, can be analytically 
continued to the other side.?The situation for the neutral (ci = 0) and damped (ci < 0) 
disturbances, however, is entirely different. The effect of viscosity was found by Lin 
(1945) to be important for this case, and one or more ‘inner friction layers’ must 
be introduced near the critical level. The resulting continuation scheme was found 
to be different from that obtained from analytic continuation. 

Benney & Bergeron (1969) suggested a different continuation scheme based on the 
dominance of nonlinearity in the critical layer. Using this nonlinear critical-layer 
continuation condition, they obtained a new class of neutral normal-mode solutions. 
Haberman (1972) later extended the theory to the case where both nonlinearity and 
viscosity are important in the critical layer. The presence of a critical-level singularity 
in the linear inviscid solution (to (1.2) for example) is an essential ingredient in these 
nonlinear continuation schemes. The l /(y - yc) type singularity for the wave vorticity 
(or d2$/dy2) indicates that, even if the wave’s amplitude is small away from the 
critical level, it  will become large (and hence nonlinear) sufficiently close to  the critical 
level, assuming, that is, that  such a singularity occurs on the real axis. That the 
eigenvalue solutions to (1.2) with the nonlinear continuation condition of Benney & 
Bergeron (1969) are neutral is, a t  least, consistent with such an assumption. 

The interdependence of the eigenvalue c (in particular, c,) and the scaling for the 
continuation schemes appears paradoxical : if the eigensolution to (1.2) has a large 
ci then the fact that  the singularity occurs away from the real axis would seem to 
invalidate to some degree the nonlinear scalings used near the critical level. On the 
other hand, the eigenvalue problem for c is often not completely defined until a 
continuation scheme is specified to connect the solution on one side of y-yc = 0 to 
the other side. A simple analytic continuation of the linear inviscid solution may give 
a mathematical solution, but this may not always be the correct one physically, as 
the ci < 0 case considered by Lin (1945) amply demonstrates.$ 

To resolve this dilemma, i t  is desirable that 
(i) an asymptotic solution to  the nonlinear equation be obtained that solves the 

(global) eigenvalue problem, or 
(ii) an initial-value problem be studied to trace the evolution of a disturbance into 

the nonlinear regime. 
Because of the mathematical difficulties involved, existing analytic results on 

nonlinear critical layers are only locally valid and have to be ‘matched’ to  the outer 
solutions of the assumed Frobenius form. No result analogous to the uniformly valid 
asymptotic solutions of Lin (1957) (which is for the viscous critical layer) is currently 
available. 

t Note that this is an asymptotic result in the limit of vanishing viscosity. For the case of small 
but finite viscosity, the effect of viscosity may have to be included in the critical layer for weakly 
unstable waves. 

1 The eigensolutions to (1.2) that one would obtain using analytic continuation would come in 
complex-conjugate pairs, and hence the unphysical result that there is no profile that is stable to 
infinitesimal normal-mode perturbations because associated with each stable eigenvalue (ci < 0 )  
there would be an unstable one (ci > 0). 
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The second approach, that  of an initial-value problem, will be adopted in the 
present paper for a stable (Couette) profile, for which the problem of viscous us. 
nonlinear continuation schemes arises. Our result seems to indicate that the nonlinear 
scaling based on the normal-mode solutions is probably not applicable to the free 
problem a t  hand, though we will show in a second paper that it is applicable to the 
forced problem when forcing is continuously applied over a sufficiently long time 
period (of the order of the reciprocal of the forcing amplitude). 

It will first be shown that an initially linear disturbance in a stable shear flow does 
not develop singularities in its flow field for all time. I n  other words, the 'normal-mode ' 
solution from ( 1 . 1 )  and (1.2) is not the steady-state limit of any physically reasonable 
initial disturbance. We have managed to show, however, that i t  is the steady-state 
limit of an initial condition with a delta function singularity in its vorticity field 
located exactly a t  the critical level. The time-dependent linear solution together with 
the nonlinear correction is calculated and the effect of nonlinearity is found to be 
uniformly small for all time. I n  other words, there is no region in the flow domain 
(including the critical level) where nonlinearity plays a significant role if the initial 
wave amplitude is asymptotically small. 

Although as a mathematical representation, an infinite sum and/or integral of all 
normal modes, however continued through their respective singularities in the 
complex plane, can be used to represent any solution of the initial-value problem (as 
long as these modes form a complete set), such a representation may not always be 
convenient. Often the behaviour of the solution can be misleadingly interpreted from 
its individual normal-mode components. In  particular, i t  is shown that the scaling 
of various terms (e.g. viscous and nonlinear terms) inside a critical layer based on 
the modal structure inferred from (1.2) may not be applicable to  free-wave problems, 
although it  has been shown to apply to problems with continuous forcing (Dickinson 
1970; Warn& Warn 1976,1978; BBland 1976; Stewartson 1978; Brown & Stewartson 
1978). 

Some of the issues mentioned above are addressed here in a model that  assumes 
that the pre-existing zonal flow is of uniform shear, i.e. 

u = u'(y-y,). (1.3) 

(The shear u ' ( t )  and the location of zero-wind line y,,(t) are allowed to depend on t ,  
though this feature is not emphasized in the present paper to avoid distraction from 
the main issues.) 

The restriction to  the uniform-shear case is admittedly made for analytic con- 
venience. However, the monotonic nature of the flow (1.3) has the desired feature 
that, for any real c ,  there is always a U ( y )  that  can match i t  to give a critical level. 
This is suitable for our purpose of studying critical level behaviour, but is not suit- 
able for studying noncritical waves. It should also be pointed out that  (1.3) is a stable 
profile. From a WKB sense the solution qualitatively typifies the class of stable 
profiles for which /I- U,, is always positive. The solution for profiles for which 
p- U,, changes sign in the domain is expected to be qualitatively different. Some 
comments on this unstable case will be made in $ 7 .  

Using the convected coordinate formulation of Phillips (1966), Hartman (1975) and 
Yamagata (1976a, b )  to  take advantage of the assumption in (1.3), we have obtained 
the solution for the viscous initial-value problem along with the nonlinear corrections. 
This solution is used to show that nonlinearity will not play a dominant role in the 
evolution of a free disturbance if the initial disturbance is not already nonlinear. The 
evolution of the wave is dominated by the kinematic shearing of its meridional 

15-2 



446 K. K. Tung 

wavenumbers and by dissipation. For the case where the initial wave spectrum has 
well-defined wavenumbers, the waves as a group eventually move southward towards 
a so-called stagnation level, determined by the location where U(y)-c = 0, with c 
being the barotropic wave speed in the absence of shear. Even though the initial 
disturbances that constitute the wave packet in general do not have a well-defined 
phase speed, it is shown that, during the later stages of its evolution, the wave packet 
as a whole behaves, from kinematic considerations, as if there exists a well-defined 
phase speed c (the so-called nominal phase speed of the packet). Because of this 
kinematic feature, some of the normal-mode results concerning critical-level absorp- 
tions can be reinterpreted in the initial-value problem treated here, even though no 
solution of the modal form exists and even when nonlinearity is taken into acc0unt.t 

Viscosity acts continuously on the waves depending on the age of the wave since 
generation. There is no ‘ singular absorption ’ of wave energy associated with critical 
levels, as would be inferred from local expansions of the normal-mode equation (e.g. 
Booker & Bretherton 1967 ; Dickinson 1969). Nevertheless, an interpretation of the 
critical level absorption phenomenon can be made in the limit of infinite time and 
small (but not zero) viscosity. This is based on the observation that, since the wave 
spends most of its time near the stagnation level (Bretherton 1966), viscosity would 
have enough time to act on the wave near this location, while the effect of dissipation 
on the wave en route is negligibly small. This argument still does not give the 
stagnation level as the primary location where the wave’s energy is ‘absorbed’. 
Indeed, i t  can be shown that the wave energy density has decreased so much due 
to the time-dependent wave-mean interaction in the wave’s southward journey that 
there is often not much left to be ‘absorbed’ at its final destination. A detailed 
examination of the wave-mean interaction problem is given in $7. 

2. Problem formulation 
The following simple barotropic vorticity equation shall be taken as the model 

equation for studying the time-dependent evolution of Rossby waves in a sheared 
zonal flow U(y, t )  : 

where e@ is the perturbation stream function, 

is the perturbation vorticity multiplied by the factor 1 / ~ ,  

J ( A , B )  A,B,-A,B,  

is the nonlinear Jacobian operator, and v is the eddy-viscosity coefficient. Equation 
(2.1) is to be solved subject to the initial condition 

6(s, Y, t = 0) = c&, y). (2.2) 

t It should be noted that the commonly accepted notion of absorption at the critical level was 
deduced either from a steady modal solution using the viscous continuation of Lin (1945) (e.g. 
Dickinson 1969), or from an initial-value calculation for forced waves neglecting nonlinearity (e.g. 
Dickinson 1970; Booker & Bretherton 1967). 



Rossby waves in a shear $ow 447 

The boundary conditions are 
5 = 0  ( y = + L ) ,  

5 periodic in x with period of 2na cos So, ( 2 . 4 ~ )  

the length of the zonal circle a t  latitude 8 = 8,. For localized disturbances, a more 
convenient condition may be 

5-0 as x+kco.  (2.4b) 

For the meridional boundary condition in (2.3), two cases can be considered within 
the present formulation. In  a finite /3-plane approximation, L is taken as &a. I n  an 
infinite /3-plane, L+ co . This latter case corresponds to the interpretation that y is the 
Mercator coordinate defined by tanh (yla) = sinS. (For plane waves, the condition 
6 = 0 at y++ M) will be relaxed to the boundedness condition at  infinities.) 

The problem of interest here is the one in which e, a measure of the initia2 amplitude 
of the disturbance, is small, i.e. e < 1.  Therefore it seems reasonable to assume that 
initially the problem is linear. Whether or not nonlinearity will eventually become 
important as time increases is a question that cannot be answered by simple 
arguments, especially for the present case with possible critical levels. It will be shown 
in later sections that unforced waves in a stable mean flow will never become nonlinear 
if they are not so initially. In  $3  the linear equation, obtained from (2.1) by setting 
e = 0, will be solved first. 

3. The linear viscous problem 

aU/ay = U’. The governing equation reduces to 
We solve in this section the linear version of (2.1) for the case of a uniform shear 

with 6 = Vz$. The general initial condition is written as 

where it is understood that the integral transform in k is to be replaced by a Fourier 
series if the solution is to be periodic in x ( 2 . 4 ~ ) .  Also, the integral transform in 1 is 
to  be replaced by a Fourier sine series if the domain is finite in the y-direction. These 
changes are discussed in more detail in appendix A. Here we will continue to use the 
integral sign in a symbolic sense. 

For the present case where the shear U’ is independent of y, it is convenient to 
transform the coordinate system into one moving with the mean flow U by defining 

rt 
“ x - J  Udt, y = y ,  

0 

7 = t ,  T(7) = 1; Udt. 

These have been called the ‘ convected coordinates ’ by Phillips (1966) and Hartman 
(1975). Noting that 

a a a a  a a  a a  
-- - _  - = - - T ( 7 ) -  -+u-=- ax a t i  ay a7 a g  at ax a7’ 
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(3.1) becomes 

where now 

(3.3) 

Note that (3.3) is separable in E and 7 ,  while the original (3.1) is not separable in 
the space coordinates because of the non-uniform U .  The initial condition (3.2) can 
be rewritten as 

there being no difference between x and 6 a t  t = r = 0. 
To satisfy this general initial condition, the solution is first written in the form 

with 

For r > 0, the equation for f ( k ,  1, r )  is found from (3.3) and (3.4) to be 

(3.7) 
d 
- f+  ipk[k2 + (Z- T(r )  k)2]-1 f+  v[k2 + (Z- T(r )  k ) 2 ]  f = 0. 
dr 

This being a first-order ordinary differential equation in r ,  an exact solution can be 
found. The solution is 

P(k, 1 , O )  = %(k, 1).  

f (k  k 7 )  = $(k, 1) exp W ( k ,  1 , T )  -w, I ,  41, (3.8) 
where 

D(k,Z,r) v [k2+(Z-T(~)k)2]d~.  s, 
For the subcase where the shear is independent of time, 

* 

(3.9) 

(3.10) 

(3.11) 

T(7) J '  U'dt = U'T, 

o = 4 U k  [tan-' ( U r  - i) + tan-' i] , 

0 

D = "{[( u U'r- f) + (&)I + $[( U'r- :)3+(3']}. 
(3.12) 

The corresponding solution for the nonrotating case has previously been obtained by 
Hartman (1973). The solution (3.6) with <(k, 1, r )  thus obtained is valid in an infinite 
domain, satisfying (2.3) with L+ co and (2.4b). The modification for the finite-domain 
cases is discussed in appendix A. 

Before we proceed to  discuss the solution in more detail for various specific initial 
conditions, we will first show that nonlinearity will not become important as time 
increases for the general case. 
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4. The nonlinear correction 
To show that nonlinearity will not play an important role anywhere in the flow 

domain, we need to demonstrate that  
(i) the linear solution remains order one everywhere in the domain for all time even 

in the absence of viscosity, and that 
(ii) the nonlinear correction to  the linear solution for the nonlinear equation (2.1) 

remains everywhere order c for all time. 
From the approach of asymptotic analysis for small c, the abovementioned tasks 

are equivalent to proving that (i) the linear solution obtained in $ 3 as the leading-order 
solution for small t: is uniformly bounded for all space and all time, and (ii) the order-t: 
asymptotic solution to (2.1),  when divided bye, is also uniformly bounded for all space 
and time. These proofs are rather tedious and so will be relegated to  appendix B. Here 
the principal conclusion is stated: for Rossby waves evolving from bounded initial 
vorticity disturbances, the effect of nonlinearity will not become signi$cant i f  it i s  not so 
initially. The nonlinearity in the initial condition is measured by the parameter c, 
which can be taken to be the ratio between the initial magnitude of the perturbation 
velocity and the value of the basic zonal flow at the location of the maximum of 
the initial disturbance. 

It should be pointed out that, like most asymptotic analyses, the result quoted 
above has only been shown to be valid, strictly speaking, for vanishingly small E .  I n  
real applications, nonlinearity may make a quantitative difference to the solution 
when E is not very small. However, as discussed in appendix B and also in $ 7 ,  the 
dominant effect of nonlinearity will first show up near turning points, rather than 
near critical levels. 

5. An exact solution and interpretation 

solution to the nonlinear viscous equation (2.1) is 

where 

It has been shown in appendix B, as can also be verified easily, that  an exact 

C ( X ,  y ,  t )  = Re{a e-D(k, t )  e ie 1 3  

0 = k(x-{: U(y,t ')dt '  +ly+Q(k,Z, t ) ,  1 
For the case where the shear U' is independent of time (as well as space), (5.1) can 
be put into the following more explicit form (Yamagata (1976a, b )  previously 
obtained a similar solution for the linear inviscid problem) : 

<(z ,y , t )  = Re { aexp { - ( g ) [ U ' t + k ( U ' t - f ) 3 +  (k)3]}ei@}, (5.2) 

with now 

0 = k( 

This simple solution will be used here to  illustrate several concepts which appear to 
be also relevant to the more general cases. 

(i) As has been pointed out for the non-rotating case by Orr (1907); Rosen (1971) 
and Hartman (1973), the exact solution in the presence of shear is non-separable, with 
the factor 

e-ik U ' y t .  
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even though (3.1) is a separable equation. This fact implies that a single normal-mode 
solution of the form 

cannot be the required solution to the initial-value problem. (See $6 for the 
exceptional case.) 

(ii) The solution is non-singular, even as t + 00. The viscous solution (5 .2)  decays 
in time and approaches the trivial solution as t + co. The inviscid vorticity distribution 
remains bounded for all time and approaches the configuration of a plane wave with 
a constant amplitude in a coordinate system moving with the mean sheared flow, i.e. 

$(Y) .ik(z-ct) 

V + O  kU' (5.3) 
t+w 

Equation (5.3), obtained by letting t +  00 in the initial-value problem, is absent from 
the set of steady-state normal-mode solutions obtained by solving (3.1) with a/a t  = 0 
or a/a t  = -ca/ax. On the other hand, the steady-state (trivial) solution in the 
presence of viscosity is correctly obtained from the normal-mode theory for the case 
of vanishingly small viscosity, provided that the viscous continuation of Lin (1957) 
is used across the critical layer. This condition gives a negative ci for the present stable 
case and hence yields an exponential decay in time. Incidentally, it  is thus seen that 
the solution in the limit t +  00 and then v+O, is different from the limit v+O and 
then t --f co . In  an initial-value approach, this ambiguity becomes academic for finite 
times. 

eiQ(k, 1 ,  t )  
(iii) The factor 

in (5.2) corresponds to the frequency factor 
e i W t  

in normal-mode theory. The quantity 52 can actually be written as 
t 

0 
Q ( k ,  I, t )  = w ( k ,  1, t') dt', (5.4) 

where 
w(k ,Z , t )  = Pk 

k2 + (Z-kT( t ) )2  (5.5) 

is recognized as the intrinsic Rossby-wave frequency if the meridional wavenumber 
of the wave in fixed coordinates (2, y) is identified with 1 - k T ( t )  (see also Yamagata 
1976a). In  the absence of shear, (0 becomes a constant, and (5.4) is simply 

sz = ot. 

One recovers the normal-mode frequency factor. 
(iv) One easily obtains from (5.1) the stream function 

The kinetic-energy density of the wave is calculated as 

K ( t )  = K@: + @;I 
&x2 exp { - 2 0 )  sin2 8 - - 

k2+(Z-k!l'(t))2 ' 
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0 1 2 3 4 5 6 I 8 9 10 
T = U't 

FIGURE 1 .  Averaged wave kinetic-energy density K(t) vs. normalized time T(t) = U't. U't = 1 
represents approximately one day for a typical shear of 1 m/s per degree latitude. 

And so the zonally averaged value is 

b2 eP2O K(t) = 
k2+ (Z-kT(t))Z. 

I n  figure 1 we depict the ratio 

m 1 + (Z/k)2 
K ( 0 )  1 + (z /k-T(t))2 
-= (5.9) 

for the inviscid case. It is seen from the figure that for the wave with Z/k > 0 (i.e. 
waves whose initial phase tilts northwest to southeast) there is an initial transient 
growth in energy density, reaching a maximum ratio of 1 + (Z/k)2, which can be quite 
large in some cases. (For example, the amplification factor is 5 for Ilk = 2.) This 
property of wave-transient growth in shear flows was first pointed out by Orr (1907) 
and later by Rosen (1971), for the non-rotating case. Recently, Lu & Zeng (1981) 
and Farrell (1981) discussed its relevance to atmospheric flows. The mechanism for 
this amplification will be discussed in § 7. Since the energy density eventually decays 
with time for U't > Z/k, the initial growth is only transient in nature and does not 
lead to normal-mode instability. 

A wave with the opposite initial tilt, i.e. Z/k < 0,  has a monotonically decreasing 
energy density for all time. 

The aforementioned change in energy density occurs in time gradually and is 
distinct from the wave-energy change normally associated with (viscous) critical-level 
absorption. 

(v) It can be shown that in the absence of viscosity there is no wave-mean-flow 
interaction for all t > 0, despite the presence of algebraic amplification and decay in 
the wave-energy density mentioned above. Specifically, the induced mean-flow 
acceleration, aa/at, which is equal to the momentum-flux divergence -amlay due 
to the wave, is zero uniformly for all y and all t > 0, since for the plane wave is 
independent of y. It is, however, not appropriate to discuss the total energy budget 
for the present case of plane waves in an infinite domain, as the total wave energy 
is infinite. A more meaningful discussion of the energetics will be given in $7 for a 
wave packet, which is of compact support. 
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6. Large-time asymptotics of an inviscid solution; relation to normal-mode 
solution 

The results of $4 in general, and $5  in particular, demonstrate that  even in the 
absence of viscosity the initial-value solution does not develop a singularity in the 
domain if the initial condition is not singular. However, the normal-mode solution 
to the same inviscid equation, if it exists, does possess a critical-level singularity where 
U(y) - c = 0. One can conclude from these facts that  either (i) a normal-mode solution 
by itself is fictitious, i.e. i t  is not the steady-state limit of any initial-value problem, 
or (i i)  i t  can only develop from an initial disturbance which is already singular a t  the 
critical level. We shall show in this section that (ii) is the case. 

It should be remarked before proceeding that the apparent contradiction mentioned 
above associated with the steady-state solutions does not arise for the viscous case 
(no matter how small the viscosity is), as we have already shown that for that  case 
the initial-value solution and the normal-mode solution (if the viscous continuation 
of Lin is used) both decay exponentially in time to  the trivial solution. The problem 
of singularities in the steady-state solution arises only for purely inviscid flows. 
Therefore the issues to be addressed here are rather academic in nature ; but the result 
will nevertheless serve to point out the origin of the normal-mode singularity and 
hence the unphysical nature of that  representation. 

6.1. Large-time asymptotic limit 

The limit of t8he inviscid solution as t --f 00 will be calculated for the case of constant 
shear, with the initial condition given by 

C(x,y,O) = Q(x,y) = ei”oZS(y-!/o) (k, > 0). (6.1) 

The solution for t > 0 is 

(6.2) 

The integrand in (6.2) is not integrable in the usual sense. This is entirely to be 
expected because the initial spectrum in 1 is not ktegrable owing to the imposition 
of a delta function as the initial condition. For passing limits inside an integral sign 
i t  is more convenient to deal with an  integrable integrand. For this purpose the stream 
function + will be treated first. Using (6 .2)  and (3.4), one finds that 

which 

dl a3 

+(x, y, t )  = - eiko(s-Ulut) iL J 
2 m  k2,+ ( I -  Ut)’ 

xexp 

becomes, upon a change in variable from 1 to 1’ = 1 - k, U’t, 

+(x, y, t )  = -eiko(s-u‘Y,t) - ~ 

277 -m k2,+lf2 

I‘ i‘ :k,[ k, 

Sm dl’ 

x exp 1, -tanr1- + tan-l 
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We can now take the t + co limit inside the integral and find that the limit of 

is given by the integral 

This integration can be performed exactly to yield a Whittaker function (see 
Gradshtyen & Ryzhik (1965, p. 405). Thus 

where y = ,8/2U’k0 is assumed to be a positive non-integer. The Whittaker functions 
in (6.6) decay exponentially for large arguments, i.e. 

W+y, -$Wo(y-y0)l) - e-lko(y-yo)l (21ko(y-yo)l)*~, (21ko(y-~o)l %- 1 ) .  

Therefore the solution satisfies the boundedness condition (2.3) a t  infinities. The 
function $(y) is well-behaved everywhere except a t  y = yo, which is the location of 
the singularity in the initial vorticity distribution. The singularity a t  yo is of the form 
(y-yo)ln (y-yo). Therefore thederivativesof$(y) areunboundedat yo, although$(y) 
itself is finite and continuous everywhere. 

To summarize, we have found that the initial-value problem with a delta-function 
distribution in the initial vorticity field approaches a steady state for large time of 
the form of a normal-mode solution: 

~ ( x ,  y, t )  +eikrJsPct) $(y), (6.7) 

where c is here found to be given by the mean-flow speed a t  the location of the initial 
singularity, i.e. c = U(yo). The steady-state vorticity can also be found from 

{(x, y, t )  + eiko(z-ct) [;;dP-k:$]. ~ (6.8) 

Knowing the equation that the Whittaker functions in (6.6) satisfy, we find that 

(6.9) 
and so the vorticity has a l / ( y  - yo) type of singularity a t  yo. 

6.2. Normal-mode solution 

By making the a priori assumption that $(x, y, t )  is of the form 

$(YL i k , ( z - c t )  1Cr(x,y,t) = e (6.10) 
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one finds that $(y) satisfies the following normal-mode equation: 

Equation (6.1 1) implies that the Rayleigh-Kuo equation 

(6.11) 

(6.12) 

holds for all y =I= yc = c / U ' ,  and that the following matching conditions across 
the critical level yc should be used: 

# J ( Y C + )  = $(Yc-L (6.13) 

The second condition, (6.14), is obtained by integrating (6.11) across y = yc. 
Solving (6.12) subject to the boundedness condition at infinities, we find 

(6.14) 

(6.15) 

(6.16) 

Continuity of $(y) a t  y = yc implies that 

A = B,  (6.17) 
since 

+O(lzlnzl) as z+O. 
1 

r(1 + Y )  
wy, -&) + 

The condition (6.14) gives only the identity that zero equals zero, and so yields 
no additional constraint on the solution. Therefore the final solution is 

A 
wy, a(2"(y-yc)), (Y > Y C L  

W-y,-f(2ko(Yc-Y)), (Y < 9c) .  

(6.18) 
T ( l + Y )  

r(1 - Y )  
A 

$(Y) = 

The 'eigenvalue c 3 U'yc is not uniquely determined: it can take any real value 
between - 00 and CO. From its definition and the location of the singularity in (6.18), 
one gives the interpretation for c only as the mean-flow speed at the location of 
singularity. 

Comparing the normal-mode solution (6.18) with the long-time limit of the initial- 
value solution (6.6) and (6.7), one sees that the normal-mode solution, which is 
singular (in its vorticity distribution), is reachable from an initial value if the initial 
vorticity distribution is of the rather unphysical form of a delta functi0n.t 

t It should be pointed out, however, that there is no unique one-to-one correspondence between 
the final steady-state limit and the initial value, and frequently more than one initial condition 
can yield the same steady-state limit. A trivial example is the present problem with the Whittaker 
function instead of the delta function as the initial condition. Nevertheless, our result shows that 
no initial condition without a singularity can give rise to a singularity in its steady state. 
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Furthermore, the location of the critical level in the normal-mode solution should 
be identified with the location of the initial singularity. 

We conclude therefore that, for  any bounded disturbance distribution, no critical-level 
singularity commonly associated with normal solutions will develop in the present stable 
free case. Conversely, the inviseid normal-mode solution, obtained with the a priori 
assumption of (6.10), is  not the steady-state limit of a bounded initial-value solution for  
the present stable prob1em.t 

7. Wave-packet solutions 
We now turn to the physically more relevant case where the initial spectrum is 

not flat (as it would be if the initial condition were a delta function). Since the 
generalization to the N-packet case is quite straightforward (see appendix C), we shall 
treat here only a representative case where the initial spectrum $(k ,  I) is peaked about 
a central wavenumber 

k, -= (ko, 10). 

But, unlike the plane-wave spectrum studied in 55, there is now some spectral spread 
Ak,  about the central wavenumber. Readers are referred to appendix C for details, 
where i t  is found that the general solution (3.6) reduces to 

C(x, y , t )  = f;o([+52~o~,~+52~o~)exp{i[S2(0)-52~o) k,-52fo) l , ]}e~p(-D(~))  (7 .1 )  

up to the order Ak,/k,  and Alllo.  Here Q ( x ,  y )  is the part of [(x, y, 0) that has a spectral 
peak a t  k,. It is understood that the contributions from other spectral peaks, if 
present, are to be added to (7.1).  We have also defined 

Q(0) = 52(k,, I , ,  t ) ,  

It is seen from (7 .1 )  that the initial shape moves according to 

[ ( t )  = [(O)-ap, y( t )  = ~ ( O ) - S z f O ) .  (7.2) 

Equation (7.2) describes the trajectory of the centre, say, of the disturbance whose 
initial position is ( [ ( O ) ,  ~ ( 0 ) ) .  Recalling that 52 can be written as the time-integral of 

7 As mentioned in $ 1 ,  the normal-mode solutions, when superposed, can still yield a valid 
mathematical, though inconvenient, representation of any bounded solution from the initial-value 
problem. In the present simple example, the normal-mode solution (6.18) when superposed (i.e. 
integrated with respect to c from - co to a) can give a valid representation of a solution evolved 
from any bounded initial condition. (This is basically a Laplace (or Fourier) transform method; 
see Case (1960) and Pedlosky (1964).) From another perspective, our delta-function initial condition 
can be viewed as the Green function of a more physical distribution, with the final solution to be 
obtained with an additional integration with respect to yo, the location of the delta-function 
singularity. The same result can be obtained from either perspective. In the same way as one 
understands that the singularity in the integrand does not necessarily lead to a singularity in the 
integral, the singularity in the normal-mode solution in the present case should also be viewed as 
nothing more than a mathematical representation of an intermediate step in the solution process. 
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a frequency o, one can express the time-dependent terms in (7.2) as 

I Q d k ,  1, t )  = - cg1(k, 1, t ' )  dt', s: 
where cgl = - h / a k  is the group velocity in the 6-direction, and cg2 = - ao/al is the 
group velocity in the T-direction. Since o ( k ,  I ,  t )  = Pk/[k2+ (1-kkT(t))2], we deduce 

/3[k2( 1 + T(t)') - Z 2 ]  
[k2 + ( 1  - kT(t))2]2 ' c,&, 1, t )  = 

(7.4) 
I ,  

ZPk(1- kT(t)) 
[k2 + (Z- kT(t))'I2 ' Cg2(k, 1 , t )  = 

At large T(t ) ,  both group velocities vanish; the packets must stagnate (in the 
convected coordinates), as can be verified. 

As an explicit example, we consider the constant-shear case, for which T(t) = U't, 
and so from (3.11) we find that the trajectories (7.2) become 

As U't + 00,  both ((t) and ~ ( t )  have finite limits, implying the existence of stagnation 
levels in both 6- and 7-directions beyond which the centre of the wave packet does 
not extend. This is consistent with the group-velocity results mentioned earlier. 

It is clear from (7.6) (and also from (7.4)) that the packet with positive lo/ko has 
a very different trajectory than the packet with negative lo /ko .  For Z,,/k, > 0, the 
initial shape moves first northward until i t  reaches a turning point at qT given by 

This occurs a t  time 
1 U ' t = O  
ko ' 

(7.7) 

when the group velocity in the meridional direction vanishes. After this time the 
group velocity becomes negative. The packet then moves southward, eventually 
stagnating a t  

(7.9) 

For the case where I ,  and k, are of different, signs, the packet trajectory is 
monotone ; the initial shape moves southward without changing direction towards 
the same stagnation level (7.9) as the previous case. The trajectories are depicted in 
figure 2. Similar trajectories have previously been obtained by Yamagata (1976b) 
using the ray-tracing method. Note the following results: 
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FIQURE 2. Northward packet trajectories ~ ( t )  or y ( t )  vs. normalized time T(t )  = U’t for a packet 
with central wavenumbers k and 1 of the same sign, and also for a packet whose central 
wavenumbers are of opposite signs. 

(i) Kinematics. The stagnation level occurs in this problem where the mean flow 
equals the unsheared Rossby-wave phase speed, i.e. where 

P c = U(q(0 ) ) -  - 
k; + 1: 

(7.10) 

(7.11) 

being the barotropic Rossby wave speed in an atmosphere with a constant mean flow 
equal to the flow a t  the initial point ~ ( 0 )  in this problem. Of course, the actual phase 
speed of the wave varies with time; only the kinematic behaviour of the packet 
resembles that of a Rossby wave with a wave speed c .  

(ii) Wave-energy density. The averaged energy density of the packet is found to be 

An observer moving with the packet 

sees an energy density given by 

(7.12) 

(7.13) 

with a = [o(((0), ~ ( 0 ) )  being the initial amplitude of the vorticity distribution. 
Equation (7.13) turns out to be the same as (5.8) for the plane-wave case, and so its 
behaviour is the same as depicted in figure 1. Thus if Zo/k0 > 0, the northward-moving 
packet in the inviscid case gains energy density algebraically, reaching a maximum 
factor of 1 + (Zo/ko)2 over the initial energy density. This maximum occurs at the 



458 K. K.  Tung 

turning point T~ given by 

--kt = 0. (7.14) 

For U't > lo /ko ,  the packet energy density decreases algebraically as the packet 
moves southward. If lo/ko < 0, the southward-moving packet has a monotonically 
decreasing energy density. 

= k E / w  for a wave packet 
is found to be 

P 
u(TT)-c 

(iii) Wave action and momentumjux. The wave action 

- 1  
(7.15) 

(The slow variations in the zonal direction are not considered in the following 
discussion in order to be consistent with other studies where the overbar is taken 
to be the zonal average over all x-dependence.) It is seen from (7.15) that, in the 
absence of damping, the action is conserved following the packet. In the presence 
of damping, it is the quantity AeZD(') that is conserved. That is, Afrom (7.15) satisfies 

A - e-2D(o) - KO(T + Q f 0 ) ) I 2 .  
4P 

(7.16) 

where the group velocity cg2 is defined in (7.4). 

to be 
The zonally averaged meridional momentum flux is calculated from our solution 

It becomes, if (7.4) and (7.15) are used, 

(7.17) - uv = -cgz(t)  A(y, t ) .  

The momentum-flux divergence is thus given by 

(7.18) 

aRer (7.16) is used. The relation in (7.18) is similar to the one first derived by Acheson 
(1976) for gravity waves in the absence of dissipation assuming slow time variation. 

(iv) Induced mean$ow. Let u be the wave-induced mean flow at second order in 
wave amplitude. It is given by the following equation obtained by zonally averaging 
the x-momentum equation : 

(7.19) 

An extra term, vi32ti/ay2, which is at least two orders of magnitude (in Alo/lo) smaller 
than the terms retained in (7.19), has been neglected in that equation. Using (7.18), 
we find that the induced acceleration is 

(7.20) 

Let us first discuss the situation in the absence of viscosity. Equation (7.20) can be 
integrated (see also Acheson 1976), yielding 

U ( y ,  t )  = -A(y, t )  ( t  2 O ) ,  (7.21) 
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assuming that there is no disturbance for t < 0. As the disturbance is introduced at  
t = 0, the mean flow is first decelerated by the amount x(y,O) in the region of the 
initial disturbance. After the packet leaves that region, x(y, t )  becomes zero and the 
mean flow is restored to the undisturbed value by the trailing part of the packet. 
Similar arguments applied to  other parts of the fluid would show that at any location 
there would be first a deceleration as the leading part of the packet arrives and an 
acceleration on its departure, leaving no permanent alteration of the mean flow. The 
only exception occurs a t  the stagnation level, where there will be a permanent 
reduction of the mean flow by the amount 

u = -A(y,, co) 
as the packet stagnates (and hence cannot depart from that level). This momentum 
is of the same amount as originally introduced by the initial disturbance but has been 
redistributed by the wave packet to its final destination. 

It will be shown next that, even though the momentum of the mean flow is 
conserved for t > 0, the energy density of the mean flow is not, and this is the cause 
of t,he transient change in the wave-energy density. 

(v) Net wave-energy density. The total (kinetic) energy density (per unit mass) of 
the system is 

where U = U'(y- yo) is thepre-existing flow, u the wave-induced mean flow calculated 
in (7.21) and K i s  the wave kinetic-energy density (7.12). The net wave-energy density 
E,  defined by the difference between the total energy density and the energy density 
of the pre-existing (undisturbed) flow, is thus given by (see e.g. Acheson 1976) 

E = u U + K .  (7.22) 

i( u+ U)2 + K 1: iuz + au+ E, 

Since K = h / k 0  and u = -A, we find 

P - u q ] .  
- 

= A  [ k : + ( l o - k o U ' t ) 2  (7.23) 

Equation (7.23) implies that the net energy density E is constant to an observer 
moving with the wave packet. This is because the action is conserved and the terms 
in the square brackets are equal to 

when the packet trajectory (7.6) is followed. Thus 
- 

E ( t )  = -CAI,,, = E(0)  (7.24) 

following the packet. 
The transient amplification and subsequent decay of the wave-energy density z ( t )  

mentioned previously can now be explained. Since in (7.22) both E and fi are 
conserved following the packet, the change in K(t) can only be attributed to the 
change in U(r(t)) as the packet moves north or south. As the packet moves north 
from its original position, the induced deceleration u occurs in a region with a higher 
value of U, causing a greater reduction in mean-flow energy density U U .  To conserve 
net energy density E ,  the wave-energy density K must increase. I n  the packet's 
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subsequent southward journey after reflection from the turning point, the induced 
deceleration occurs in a region with a lower value of U ,  causing a smaller reduction 
in mean-flow energy density (than the initial reduction). then must decrease. As 
the stagnation level is approached, iiU approaches i ~ c ,  which is equal to  the total E 
(see (7.24)). Thus K m u s t  vanish. 

The type of wave-mean-flow interaction discussed above is distinct from that 
commonly associated with ‘ critical-level absorption ’. The latter is caused by wave 
dissipation in the presence of viscosity, to  be discussed in (vii). 

(vi) Instabilities. Since the temporal amplification mentioned above is associated 
with a moving wave group, i t  is different from what is called ‘absolute’ or 
‘normal-mode ’ instability. In  an absolute instability, a disturbance field grows in 
time a t  all space points, while, in the present case, the growth does not occur 
everywhere, but is observed when moving with the packet. 

Furthermore, the algebraic growth of the wave-energy density is not sustained. 
After reflection from the turning point, the wave-energy density decays monotonically 
in time as the packet moves southward to regions with lower values of the mean 
flow. The transient time growth that is observed initially does not lead to  normal-mode 
instability for this case. 

The situation would be very different if the southward journey of the wave packet 
could be stopped. If the ‘inflection point’ is encountered before the stagnation level, 
not only is the decay in wave-energy density arrested, but, by turning the packet 
northward, the time amplification mentioned in (ii) can again be realized. How this 
procedure can lead to normal-mode instability is not a t  all clear a t  present, but a t  
least we know that,  without the ‘inflection point’, no sustained amplification can 
occur. This argument is consistent with Rayleigh’s (1880) derived result that  the 
presence of an ‘inflection point ’ is necessary for normal-mode instability. That 
Rayleigh’s criterion is not suficient for normal-mode instability can be demonstrated 
from the above perspective for the case where the ‘inflection point ’ occurs to the south 
of the stagnation level, and is therefore not effective in preventing the energy-density 
decay from taking its full course. It is perhaps not a coincidence that a more stringent 
necessary condition for normal-mode instability, due to F j ~ r t o f t  (1950), does require 
the ‘inflection point’ to occur in the region where U ( y )  - c  is positive for the present 
monotonic profile (see Lindzen & Tung 1978). Recently Tung (1981) has shown that 
this requirement is also suficient for normal-mode instability (for the present case 
of monotonic profiles in infinite domains). 

(vii) Viscous absorption. I n  addition to the algebraic time variations in the wave’s 
energy density, mentioned in (ii) and (v), caused by transient wave-mean-flow 
interaction, there is a second mechanism, the action of viscosity, causing the decay 
of the wave’s energy density, according to  (7.12). There is, however, no ‘singular 
absorption’ a t  a certain location in space commonly associated with a critical level. 
Instead, thc dissipation by viscosity acts continuously in time. The exponential factor 
in (7 .1  ), c - ~ ( ’ ) ( ~ ) ,  diminishes the wave amplitude according to the age of the wave since 
generation. 

However, since the packet eventually stagnates at the stagnation level, most of 
the viscous dissipation does occur a t  that  location, provided that viscosity is so small 
that  the dissipation of the wave en route is insignificant, and that one is examining the 
wave field at a time late enough after generation that the waves have already spent 
a sufficiently long time in the vicinity of the stagnation level for the viscosity to act 
on them. This then constitutes an interpretation, from an initial-value approach, of 
the ‘critical-level-absorption’ result of Dickinson (1969). It should be pointed out, 
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however, that, in order for this argument to  work, viscosity has to  be so small that 
viscous dissipation en  route can be ignored, but, for this case, the transient wave- 
mean-flow interaction discussed in (v) becomes the dominant mechanism for wave 
‘absorption’. Our earlier result in (v) shows that, by the time the wave packet 
approaches the vicinity of the stagnation level, most of its wave-energy density has 
been converted into mean-flow energy. Specifically, the total initial (net) wave energy 
E in (7.24) resides now mostly in the mean-flow part tiU (see (7.22)) by the time the 
wave packet approaches the stagnation level. I n  other words, there is not much wave 
energy left for the viscosity to ‘absorb’ a t  the critical level. It can also be shown, 
using (7.20), that  the additional ‘absorption’ of wave momentum by viscosity is also 
negligible a t  the stagnation level. 

For most practical cases, the damping timescale is about a week, which is 
comparable to  the length of time it  takes the packet to travel to  the vicinity of the 
stagnation level. Therefore it appears that, wave dissipation en route is important and 
that the role of the critical level in ‘absorbing’ the wave energy at the wave’s final 
destination is probably not important in practical situations. It can be argued then 
that the critical level in the stable-free case plays no special role, and can be replaced 
by, say, a wall, provided one can somehow simulate the kinematic propagational 
characteristics of the waveguide. 

8. Conclusion 
We have used a Rossby-wave problem as an example to demonstrate that  the 

normal-mode solution with critical-level behaviour in some cases bears no resemblance 
to the initial-value problem, not even in the infinite-time limit. It is pointed out that  
i t  is misleading to use the scaling based on the normal-mode structure to determine, 
for example, where nonlinear terms would become dominant. It will be shown, in a 
separate paper, however, that  the solution to the mathematical initial-value problem 
where forcing is continuously present would approach the normal-mode singular 
structure a t  infinite time in the absence of viscosity. It is suggested that, for the 
free-wave problem and also for the forced-wave problem where forcing is present for 
a finite period of time, it is more appropriate to treat the mathematical problems as 
time-dependent rather than to invoke the normal-mode separation (1 .1  ). 

The simple solutions obtained serve to demonstrate the two separate mechanisms 
through which wave-mean-flow interaction can take place in an initial-value 
problem : viscosity provides one mechanism for ‘ absorbing ’ the wave’s energy. 
Although the ‘ absorption ’ actually occurs continuously in time after the wave’s 
generation, as opposed to the concept of ‘singular absorption’ that occurs in a 
particular location as implied by the normal-mode approach, the two viewpoints car 
be reconciled in the asymptotic limit of small viscosity, as already discussed. The 
second mechanism involves the type of energy exchange that conserves wave action. 
It is consistent with the asymptotic result of Bretherton & Garrett (1969) on wave 
propagation in a slightly inhomogeneous medium. (It turns out that the irkhomo- 
geneity, i.e. shear, does not need to  be small for the present problem.) Wave 
amplification occurs following the packet as the easterly momentum of the packet 
is deposited (temporarily) in the region where the pre-existing mean-flow velwity is 
higher; the wave-energy density decays when the same easterly momentum is 
deposited in a region of lower mean-flow velocity. It is argued that in initial-value 
problems this mechanism of energy transfer is more important than that of 
critical-level absorption in the presence of small viscosity. For finite values of 
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viscosity used in practical situations, viscous dissipation in time may become more 
important. However, for this case, the interpretation of critical-level absorption is 
less clear in an initial-value free problem. In any case, the critical level’s role in 
absorbing wave energy becomes secondary. 
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Appendix A. Boundary conditions 
The solution (3.6) with g(k,1,7)  given by (3.8) is valid in an infinite domain, 

satisfying the boundary conditions (2.3) with L+ 00 and (2.4b). If the condition of 
periodicity in the zonal (x-) direction, ( 2 . 4 ~ ) ~  is used instead, the integral in k in (3.4) 
should be replaced by a sum, i.e. 

1 m m 
dk+ I: Ak, A k = -  

J-cc n--m a cos 8, ’ 

and the continuous wavenumber k replaced by a set of discrete wavenumbers, i.e. 

k + k ,  5 nAk (n = 0, + 1 ,  k 2 ,  ...). (A I b )  

By virtue of the integrability condition, the original solution (3.6) satisfies the 
meridional boundary condition 

[ + O  as y + f c o ,  

which is (2.3) with L+co. In  a finite P-plane with finite L,  the solution has to  be 
modified slightly in order to satisfy the boundary conditions 

The modification again involves replacing the continuous wavenumber 1 by its 
discrete counterpart 

with 
l + l n  = n A l  (n = 1 ,2 ,3 ,  ...), (A 3a) 

for this case. However, the index n takes only positive values in (A 3a). Therefore 
the eolutiuri c(k, I, r )  in (3.8) is now defined only for the positive discrete points 1,. 
The function at  the negative values of 1 is defined through the formula 

With this continuation formula, we have in effect made the original solution (3.2) 
odd about the point y (or 7)  = - L. This is permissible since the domain in y > - L 
is outside the physical domain. To show that with the modifications in (A 3a) and 
(A 4) the boundary condition (A 2) is satisfied, we note that the meridional Fourier 
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integral now becomes 
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dleiz"f(k, l ,~)  = dlsinl(y+L)e-izLt(k,1,7) 

(A 5 )  
i m  

= - A1sinl,(y+L)e-iznL&k,1,,7) 
n n - 0  

which vanishes at y = & L, as required. Note that to be consistent with the above 
formulation the initial spectrum to(k, 1) is given by the Fourier transform of the initial 
condition only for positive values of 1 = 1, : 

The function a t  negative values 1 = - 1, should be obtained through the continuation 
(A 4). The same procedure should also be followed for ((k, I,, 7 ) .  

Appendix B. Nonlinearity 
B. l .  Uniform boundedness of the leading-order solution for s+O 

We first need to show that the solution obtained in $ 3  by neglecting nonlinearity is 
uniformly bounded, i.e. it is non-singular everywhere. It suffices to consider the 
boundedness issue for the inviscid problem, as the viscous term would always make 
the solution more bounded for large enough time because D is p0sitive.i 

Using Parseval's formula, it is easy to show that the solution 

is bounded in the mean, in the sense that the integral of 1612 over the domain is 
bounded. Since 

lg2 dx dy = - f l 

(B 2) 

one can conclude that the solution for all time is bounded in the mean if it  is so 
initially. This, however, does not imply uniform boundedness, for which we need to 
show that 1c(x, y, t)l itself is bounded everywhere. Applying Schwarz's inequality for 
infinity integrals (or sums when appropriate), one obtains from (B 1)  

= J J ($(k, 1)I dk dl. 
(2nI2 

t Marcus & Press (1977) previously treated the non-rotating case of the present problem and 
showed that the tangential velocity is uniformly bounded from above by a constant times (vt)". 
This bound is not tight enough for our purpose as it approaches infinity for finite times in the limit 
v - t o .  
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We conclude therefore that if the initial Fourier spectrum (which is the same in 
convected or fixed coordinates) is absolutely integrable, then the solution for all later 
time is uniformly bounded and hence no singularity can develop. Furthermore, since 
absolute integrability is a prerequisite for the existence of a Fourier inversion, and 
since all physical initial distributions will have such a spectrum, i t  appears that our 
initial-value solution will not develop a singularity in the flow field, in particular, not 
the critical-level singularity associated with the normal-mode solution. 

The proof can also be applied to the stream function with only slight modifications. 
The solution for @ is 

which implies the following inequality 

The maximum of (B 5) occurs when T = l / k  (which, incidentally, is the time when 
the wave with positive 1/k reaches its turning point - see $ 7 ) .  Thus 

The uniform boundedness of $- then follows if Co(k, l ) / k 2  is absolutely integrable. Since 
the initial spectrum for vorticity is absolutely integrable, go(k, l ) / k 2  should also be. 
The only problem may arise a t  k = 0 if g0(k, 1) does not vanish as k approaches zero. 
We know, however, $ ( O ,  1)  is  zero by the definition of wave disturbance used in this 
study. The zonally uniform component of the flow has been assumed to be U ( y ) ,  which 
is not modified at this orde? in the asymptotic expansion. The question that remains 
is whether c0(k ,  1 )  approaches zero a t  least as fast as k2 for small k .  We will assume 
that this is the case. In  fact, in physical problems, disturbances with very long zonal 
wavelengths should be constrained by the periodicity of the zonal circle, which 
quantizes k into discrete values, with co(k ,  E )  = 0 in the neighbourhood of k = 0. 

It has often been pointed out (see’Farrel1 1982) for a plane wave, or a wave packet 
with an initial central normal wavenumber much larger than its central tangential 
wavenumber, that the transient amplification implied by the factor in the denominator 
of the above expression will lead to  an amplification factor of 1 + ( l / k ) 2 ,  which can 
be so large as to  invalidate the linear assumption. Our discussion here suggests that  
this does not happen because 

and go(k, l ) / k 2  should be bounded. 

B.2. Nonlinear correction 

To find the nonlinear correction to the linear solution (B l ) ,  we write the nonlinear 
solution to (2.1) in the form 

5(.? y ,  t )  = C(”(., y, t )  + 4?j(z7 y ,  t ) ,  (B 7 )  

where Qoj is the linear solution satisfying (3.1) and eQ1) ( r ,  y ,  t )  the required nonlinear 
correction. Substituting (B 7 )  into the nonlinear equation (2.1), one gets, to order 8, 
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the following inhomogeneous equation for C(l) 

subject to the initial condition 
p ( X ,  y, 0) = 0. 

Using the linear viscous solution, we know already the ‘forcing term’ on the 
right-hand side of (B 8) : 

- J[@/CO), c ( O ) ]  = - $(o) ( 0 )  + $ ( O ) c ( O )  
6 6 1  1 f 

t0(k’, 1’) to(k, E”) k“l’-kE” 
- dk’ dk“ dZ‘ dl“ exp {i(k’ + k”)  [ --{ (W4 { { s l + ( T ( ~ ) - z ’ / k / ) ~  k‘2 

+i(Z’+E”)r+iS2(k’, 1’,7)+iQ(k”, 1”,7)-D(k‘Z’,7)-D(kN, Z”,T)} .  (B 10) 

Note that the integrand decays in time exponentially for the viscous case and 
algebraically for the inviscid case. 

Incidentally, because of the presence of the factor k“Z’ - k‘Z” in the integrand, one 
sees that the nonlinear ‘forcing term’ vanishes when 

k ’ + k  = 0, l’fl” = 0 (B 11) 

If the initial spectrum consists of only waves that satisfy (B 1 1 )  or (B 12) then the 
nonlinear term vanishes identically, and the linear solution also satisfies the nonlinear 
equation (2.1) exactly. For example, the solution satisfying the plane-wave initial 
condition 

[(x, y, 0) = a cos (kz+Zy) 

is given by, from (3.6) and (3.8), 

exp{-D(k,Z,t)}. (B 14) 

It can be shown by direct substitution that (B 14) is also the exact solution to the 
nonlinear viscous equation (2.1). Equation (B 14) appears to be the only known exact 
solution to the nonlinear viscous barotropic vorticity equation in the presence of a 
sheared flow. 

Returning now to the more general case where the Jacobian term is not zero, we 
proceed to  calculate the nonlinear correction [[l) forced by the Jacobian of the 
leading-order solution. Using the convolution theorem, we find that the Fourier 
transform of (B 10) is 

- [d[ [dr  e-ikf-il? J($(o), g ~ o ) )  
J J  

kZ‘ - k’l - 
k’2[ 1 + (T(7) - Z’/k’)Z] 

- 1 {dk‘jdl’ t 0 (k ’ ,  1’) f o ( k -  k‘ ,  Z-1’) 
(2n)2 

x exp {in( k’, Z’, 7) - D(L’, Z’, 7) + iQ( k - k’,  2 - 1’, 7) - D( k - k’, 1 - Z’, 7 ) )  

= B(k, I ,  7). (B 151 

(B 16) 

Writing 

p ( x ,  y, t )  = - l d k  {dl eikt+iz? & ) ( k ,  1 , ~ )  
(2nI2 
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and taking the Fourier transform of (B 8), one arrives a t  the following ordinary 
differential equation for ((l): 

The solution to (B 17)  satisfying the initial condition (B 9 )  is 

The objective here is to determine if Q1)(k, I ,  T )  remains bounded and of order unity 
or less for all time. 

Let us first treat the case of u = 0. One finds from (B 18) that  

IC(’)(k> I ,  ?) I  

< 107d7’ IB(k, 1, T ’ ) (  = - [ d7’ Sdk’jdZ’ I$(k’, 1’) &k-  k’, Z - Z ’ ) l  
GW2 0 

1kl’- k‘lJ 
X k’2[1 + ( T ( ~ ’ ) - l ’ / k ’ ) ~ ] ’  (B 19) 

Since the integrand is integrable with respect to k’ and Z’, one can interchange the 
order of integration and write (B 19) as 

(B 20) 

The 7-integral is bounded for all 7 for fixed k, 1, k‘ and 1’ for monotonic T(T) .  As an 
illustration, i t  is easily seen that for the constant-shear case 

T(T’)  = U7’  

the integral can be performed exactly, yielding 

d7’ 1 1 +(U’7’-Z’/k’)2 

which is seen to be bounded for all T .  In  addition, it is bounded for all k’ and Z’. 
Therefore the integral on the right-hand side of (B 20) exists and is bounded for all 
time. This implies the uniform boundedness of the spectrum O’)(k, 1,7). 

To show that Q1)(x, y, t )  is uniformly bounded we need to demonstrate the absolute 
integrability of C(l)(k, I ,  T )  with respect to k and 1. By going inside in the integral sign 
in (B 20), which is permissible, one can see that C(’)(k, I ,  7 )  is absolutely integrable with 
respect to k and 1 provided that the quantity 

Cn(k - k’, 1 - 1’)  [(k - k’) 1’ - ( I  - Z’) k’] 

is absolutely integrable with respect to k and 1. Thus we have shown that the nonlinear 
correction is uniformly bounded and hence remains of order c for all time if the 
spectrum of the initial disturbance is such that $ ( k ,  I )  decays to zero for large k and 
1 faster than k p 2  and This condition is slightly more stringent than the condition 
for absolute integrability, but is nevertheless satisfied by almost all physically 
reasonable initial conditions. 
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Some of the arguments used above do not hold when viscosity is retained. However, 
it can be shown that,, since 

D(k, Z,7) > D(k, 1 , ~ ’ )  (7 > 7 ’ )  

for monotonic 7’(7), we have from (B 15) 

I C W ,  L7)I < d.r’lB(k, h7’)l 

- ]kZ’-k’Z] lto(k’,Z’)[o(k-k’,Z-Z’)] 
- 1 d7’ Idk’ IdZ‘ 

k’2[1 + (T(~’)-l’/k’)~] ( 2 4 2  0 

x exp { - D(k’, Z’, 7 ’ )  - D( k - k’, 1 - Z’, 7 ’ ) ) .  (B 21) 

It is easily seen from (B 21) that the k’, 1‘ and 7’ integrals exist and that [(k, 1 , ~ )  is 
absolutely integrable with respect to  k and 1. Thus we have shown that the nonlinear 
correction e[(z, y, t )  is uniformly bounded and remains of order E for all time. 

Appendix C. Wave-packet solutions 
Let Qj)(x,y, t )  be the solution to (3.3) that  corresponds to an initial condition 

@(x, y) with a Fourier spectrum f!jj)(k, 1) concentrated a t  the wavenumbers ki, lj. 
From (3.6) and (3.8) we have 

where Q = i n -  D, with SZ and D defined in (3.9) and (3.10). Assuming that @(k, I )  
is small for wavenumbers outside kj Akj and Zj AZj, we can retain only the first few 
terms in the Taylor-series expansion of Q, namely 

Q(k, Z,t) = i[s2(kj, lj,t)+ok(kj, z j ,  t )  (k-kj) +Qdkj ,  zj, t )  (i-zj)l-D(kj,z~,t) 

Assuming that Akj/kj, AZi/Ei and vkj/ U’ are all much smaller than unity in magnitude, 
we drop the ‘second-order’ terms in the expansion of Q as indicated in (C 2). Thus 
(C 1) gives 

Qj) N exp[ikjE+iZjy+Q(kj,Zj,t)] 

(2n)2 -m -02 

x ‘Im d k r  dZ@)(k,Z)exp[i(k-kj) (E+Bk(kj,Zj, t ) ) ]  

xexp[i(l--lj) (y+Ql(kj,Zj,4)l 
- 

= C!j’)(E+Qk(kjj lj, t ) ,  y+QZ(kj, Zj, t ) )  

xexp{i[~(kj,Zj,t)--52,(kj,lj,t)kj--a,(k~,~*,t)~jl-D(kj,~j,t)>. (C 3) 

If the initial spectrum &(k,Z) has more than one peak, the contribution from all 
dominant wavenumbers has to be summed, i.e. 
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CORRIGENDUM 

Nonlinear-wave effects on fixed and floating bodies 

By MICHAEL DE ST. Q. ISAACSON 

Journal of Fluid Mechanics, vol. 120 (1982), pp. 267-281 

Equation (2.17) requires an extra term to account for the change in location of Sf 
over a time step. For a point on Sf that moves vertically a distance Az( = T ~ + ~ ~  - v t )  
in time At, the additional term is 

This additional term has been incorporated into the calculation procedure. (A 
horizontal shift of the point requires a similar term as already indicated in (3.21).) 


